
72

DBPA: A Benchmark for Transactional Database Performance
Anomalies
SHIYUE HUANG, Peking University, China
ZIWEI WANG, Peking University, China
XINYI ZHANG, Peking University, China
YAOFENG TU, ZTE Corporation, China
ZHONGLIANG LI, ZTE Corporation, China
BIN CUI, Peking University, China

Anomaly diagnosis is vital to the performance of online transaction processing (OLTP) systems. In the
meanwhile, machine learning techniques can reason complex relationships beyond human abilities and
perform well on such problems. However, they rely on a large number of training samples for anomalies,
which are in serious shortage in both industry and academia due to the difficulty of collection. The problem
raises the demand of a benchmark for anomaly reproduction and data collection.

In this paper, we propose DBPA, a benchmark for transactional database performance anomalies. Specif-
ically, we identify nine common anomalies rooted in the diverse influence factors. For each anomaly, we
carefully design a reproduction procedure, which consists with its root cause in real-world databases. With the
reproduction procedures, users can easily generate a dataset in a new environment and extend new anomaly
types. For compound anomalies, we provide a generation algorithm that allows users to generate compound
anomalies data of any possible combinations with existing collected data. We also provide a large dataset of
both normal and anomalous monitoring data collected from various environments, facilitating the training of
machine learning models and the evaluation of new algorithms for anomaly diagnosis.

CCS Concepts: • Information systems→ Database performance evaluation; Autonomous database ad-
ministration.

Additional Key Words and Phrases: database performance, anomaly diagnosis, benchmark, dataset

ACM Reference Format:
Shiyue Huang, Ziwei Wang, Xinyi Zhang, Yaofeng Tu, Zhongliang Li, and Bin Cui. 2023. DBPA: A Benchmark
for Transactional Database Performance Anomalies. Proc. ACM Manag. Data 1, 1, Article 72 (May 2023),
26 pages. https://doi.org/10.1145/3588926

1 INTRODUCTION
Modern transactional databases are faced with complex problems of performance anomalies. With
the growth of the size and complexity of the database, the queries may suffer from performance

Authors’ addresses: Shiyue Huang, huangshiyue@pku.edu.cn, School of CS & Key Laboratory of High Confidence Software
Technologies (MOE), Peking University, Beijing, China; Ziwei Wang, wangziwei@stu.pku.edu.cn, School of CS & Key
Laboratory of High Confidence Software Technologies (MOE), Peking University, Beijing, China; Xinyi Zhang, zhang_xinyi@
pku.edu.cn, School of CS & Key Laboratory of High Confidence Software Technologies (MOE), Peking University, Beijing,
China; Yaofeng Tu, tu.yaofeng@zte.com.cn, ZTE Corporation, Nanjing, China; Zhongliang Li, li.zhongliang@zte.com.cn,
ZTE Corporation, Nanjing, China; Bin Cui, bin.cui@pku.edu.cn, School of CS & Key Lab of High Confidence Software
Technologies (MOE), Institute of Computational Social Science, Peking University (Qingdao), Peking University, Beijing,
China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/5-ART72 $15.00
https://doi.org/10.1145/3588926

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

HTTPS://ORCID.ORG/0009-0009-3726-5858
HTTPS://ORCID.ORG/0000-0002-7584-3067
HTTPS://ORCID.ORG/0000-0003-1653-2485
HTTPS://ORCID.ORG/0000-0002-2616-2273
HTTPS://ORCID.ORG/0009-0007-5848-6540
HTTPS://ORCID.ORG/0000-0003-1681-4677
https://doi.org/10.1145/3588926
https://orcid.org/0009-0009-3726-5858
https://orcid.org/0000-0002-7584-3067
https://orcid.org/0000-0003-1653-2485
https://orcid.org/0000-0002-2616-2273
https://orcid.org/0009-0007-5848-6540
https://orcid.org/0000-0003-1681-4677
https://doi.org/10.1145/3588926

72:2 Shiyue Huang et al.

regression due to inappropriate indexes, vacuums in the data blocks, or bad transaction logic. The
sudden increase in the arrival rate of the queries, especially for instant online services, can also
lead to performance degradation. It is difficult to manually diagnose performance anomalies in
modern transactional databases, and traditional algorithms might fail due to low precision and
recall [53, 74].
The diagnosis of anomalies can be defined as anomaly detection and classification problems,

where machine learning techniques can performwell [21, 35, 54, 69, 72–74]. In recent years, machine
learning techniques have made significant advances in detection and classification problems,
including tasks on images, natural language, and tabular data. Empirical studies [55] show that
they can perform better than traditional algorithms in anomaly detection and classification. To
diagnose database performance anomalies, the most commonly used data is the monitoring metrics
collected from the database and the operating system [41, 43]. It is in the form of tabular data,
which is suitable as the input of machine learning models.

However, there is a critical problem to apply machine learning to database performance anomaly
diagnosis. The machine learning models require a large amount of data for training [24], which
is deficient in both industry and academia. In industry, the performance anomalies have a low
detected rate. It is difficult to detect and reason the performance degradation of certain queries
within a complex workload [25]. Moreover, the monitoring metrics may not be recorded after a
diagnosis procedure is finished. Database administrators (DBAs) usually only record the appearance,
cause, diagnosis procedure, and fix procedure. Such data is not suitable for machine learning. In
academia, there are some small datasets for the experiments in the research of diagnosis algorithms.
Their sizes are small and the data lacks diversity in both environments and configurations, which
limits the generalization abilities of the machine learning models.

This problem reflects the demand for a benchmark dataset for database performance anomalies.
However, it is challenging to build a dataset due to the following issues.
Absence of determinate reproduction of database performance anomalies. A natural

reproduction approach is to passively observe the performance during a long-time stress testing
procedure [25]. The periods of the performance degradation are gathered as a dataset. A vital
weakness of this approach is that it is difficult to accurately identify the root causes of the anomalies.
The existing automatic diagnosis techniques are not reliable to work without manual interven-
tion [23, 41, 66]. Note that the performance anomalies usually do not trigger warning logs, so
their root causes are mainly identified by the monitoring metrics, which are unstable and complex.
Thus, it requires experienced DBAs to spend much time and effort analyzing the data. This is
unaffordable to construct a dataset with thousands of anomalous samples, which is a common
scale for machine learning. To accurately identify the root causes of the anomalies, the appropriate
approach is determinate reproduction that proactively reproduces each anomaly according to the
root cause.
Limited diversity of scenarios for the same anomaly type. For one anomaly type, the

corresponding monitoring data can be quite different because of the various influence factors,
which compose the reproduction scenarios of the anomaly [44, 45]. Take the anomaly of missing
indexes as an example, the scenario of this anomaly can be generally described as follows. First,
the anomalous queries are operated in a certain system environment with some other concurrent
queries as the background workload. Second, the table that suffer from missing indexes has a certain
shape, which is determined by the number of columns, the size of each column, and the number
of rows. Finally, there is a certain concurrency degree of the slow queries on that table, which is
measured by the number of queries that concurrently execute. The dataset should contain multiple
values for these dimensions so the machine learning algorithms can learn the common features

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:3

and generalize to other scenarios. However, the existing datasets [23, 41, 66] only contains limited
scenarios, which essentially restricts the generalization ability of the applied algorithms.
Missing support for compound anomalies. It is common that different anomalies occur at

the same time [66]. But there is no benchmark supporting the compound anomalies of various
possible combinations. One reason is that it is unaffordable to reproduce all the possible compound
anomalies because of the large number of combinations. An alternative approach is to allow the
users to generate the data for compound anomalies with existing data, which is equally helpful as
the samples for the diagnosis algorithm. However, the monitoring metrics of compound anomalies
are not a simple combination of the values for single anomalies. A carefully designed algorithm is
needed to generate the data of compound anomalies from single anomalies.

Motivated by the problems, we proposeDBPA, a benchmark for transactionalDataBasePerformance
Anomalies, which provides both the anomaly reproduction procedures and a corresponding dataset
with various scenarios. Users can employ DBPA for the following tasks.

(1) Train a machine learning model for anomaly diagnosis with DBPA dataset in a similar
database environment.

(2) Reproduce the anomalies and collect enough data with DBPA benchmark for machine learning
tasks in other various database environments.

(3) Evaluate the algorithms easily for database performance anomaly detection and diagnosis
with DBPA dataset.

Based on our industrial diagnosis experiences and related research work [23, 66], we select
nine common anomaly types rooted in the database environment, the workload amount, and
the queries. To ensure determinate reproductions, we analyze the root cause of each anomaly
type and design specific reproduction procedures. We also verify that the anomaly happens by
checking the performance of specific queries. For diversity, we not only set up different system
environments and background workloads, but also have different configurations for each anomaly
type. To support compound anomalies, we propose a generation algorithm that can generate the
data of compound anomalies through the data of single anomalies and the normal data. We select a
few combinations of anomalies that cover all the supported types and construct a dataset for them
through reproduction. The generation algorithm is trained on the collected combinations, and can
be used to generate any combination of the supported anomalies

We summarize our contributions as follows.

• We propose the determinate reproduction procedures of common database performance
anomalies, which allows the users to collect abundant data for anomaly diagnosis.

• We construct a large dataset of transactional database performance anomalies, which has
diverse scenarios and supports compound anomalies.

• We evaluate common algorithms for anomaly detection and diagnosis with DBPA. With
empirical studies, we prove that DBPA can improve the performance of anomaly diagnosis
in transactional databases by enhancing the abilities of machine learning algorithms.

The rest of the paper is organized as follows. Section 2 presents some related work. Section 3
introduces the preliminaries of common anomaly types and requirements for a benchmark. Section
4 shows how we reproduce the selected common anomalies. Section 5 shows how we construct
our dataset. Section 6 shows the validation experiments of DBPA. Section 7 shows the evaluation
experiment of some common algorithms for anomaly detection and diagnosis. Section 8 summarizes
this paper.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:4 Shiyue Huang et al.

Table 1. Open Datasets of Database Anomaly.

Ref. #Cases Diversity Anomaly Types

[66] 396 3 environments 10
[41] 319 Diverse services 10 iSQs
[23] 200 Diverse throughputs 10

2 RELATEDWORK
Database Performance Anomaly Diagnosis. Some traditional algorithms are proposed to
diagnose the performance anomalies in transactional databases, but machine learning is seldom
used. DBSherlock [66] uses causal models to diagnose performance anomalies. The dataset for its
experiment is small and lacks diversity. ISQUAD [41] focuses on intermittent slow queries and uses
a clustering algorithm, TOPIC, to identify the anomaly types. Its dataset comes from the service
workloads of Alibaba OLTP Database, and the number of anomalies is also small. Dundjerski et
al. [14] use an end-to-end rule-based method to diagnose the anomalies in Azure SQL Databases [3].
Both the data and the diagnosis method are only for Azure SQL. AutoMonitor [23] uses a modified
version of K-Nearest-Neighbor (KNN), a naive machine learning algorithm, for diagnosis. The
dataset still has a small size and lacks diversity. Some other researchers use debug logs [18, 46] or
time metrics [9, 26, 27] for diagnosis, but the collection of such data has a significant influence on
database performance. We summarize the properties of the open datasets in Table 1. DBPA has a
larger data size, more diversity in scenarios, and extensiveness to various anomaly types.
Benchmarks for Anomaly Detection. Some researchers [15, 20, 22, 33, 49] construct bench-

marks for anomaly detection by transforming real-world data. Based on the datasets, they design
certain evaluation metrics for different anomaly detection algorithms, such as point difficulty [15]
and NAB Score [33]. Exathlon [22] serves as a benchmarking platform for both evaluations and data
analysis. TSB-UAD [49] employs data augmentation and introduces novel measurements of dataset
difficulty. ADBench [20] assesses comparison angles including the availability of supervision, the
anomaly types, and the algorithm robustness. Our work differs from theirs in three aspects. First,
we provide both the dataset and the approach to generate the data from scratch. Second, our
benchmark contains different types of anomalies, so it can be used for both anomaly detection and
diagnosis. Finally, we focus on the performance anomalies of transactional databases and design
the reproduction procedures that consist with the root causes.

Database Tuning. The tuning techniques have been extensively studied in databases, including
knob tuning [1, 13, 16, 17, 31, 34, 67, 68, 70, 71, 75], index selection [2, 30, 51, 60], workload balancing
and resource management [42, 57, 58, 61, 62], etc. They help improve database performance as
advisors for better configurations. Our work is orthogonal with the tuning techniques, whose target
is not to tune, but to identify the type of the anomaly, trigger the tuning procedures and indicate
which component (e.g., knob, index, etc.) to tune in complex modern databases. Even for a DBMS
equipped with a tuning tool, DBPA can still help troubleshoot the system because we support
various configurations and provide verification conditions for the occurrence of the anomalies.

3 PRELIMINARIES
3.1 Common Performance Anomalies
Database performance anomalies are presented as the increase of query latency or the decrease of
transaction throughput. Their root causes correspond to the various influence factors of database
performance, which helps categorize the common anomaly types for DBPA.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:5

The performance of a transactional database system is mainly influenced by the database envi-
ronment, the workload, and the design of the database management system (DBMS) [32, 74]. We
consider a given DBMS design stable, so we focus on the environment and the workload, which
can be separated into two aspects: the amount [61] and the queries [11, 29, 59]. So we explore the
common anomalies caused by the three categories. Based on the diagnosis history from an indus-
trial database service, our experiments, and other research work [23, 66]. We select the following
anomaly types for DBPA.
Database Environment: We consider the database configurations and the resources as the

main influence factors.
(1) Small shared buffer. It is a representative bad configuration [1] that causes database per-

formance downgrade. The shared buffer works as the cache of the disk, which can significantly
influence the database performance [34, 67, 70]. A small shared buffer is a common anomaly caused
by mistaken adjustments. Some other bad configurations, such as small work memory, may not sig-
nificantly affect the performance of most queries in a transactional database according to empirical
studies [68].
(2) I/O saturation due to other processes. It is a representative of resource bottleneck and differs

from the anomaly caused by the workload. The main system resources include I/O, CPU, memory,
and network [37, 47]. In a hard-disk DBMS like PostgreSQL, CPU and memory are usually not the
bottleneck resources [12], and our experiments also show that CPU and memory saturation does
not lead to significant performance degradation. Network problems mainly occur in distributed
systems [7, 39]. So we only select I/O bottleneck for reproduction.

Workload Amount: The amount of the workload can be measured as the number of transactions
sent to the database per second. Large workload amount can cause pressure on the file system, the
transaction system, and the resources [42].

(1) Highly concurrent inserts. The anomaly relates to the file system, where the expansion of data
files becomes a bottleneck.
(2) Highly concurrent commits. The anomaly relates to the transaction system, where the wait

events increase.
(3) Heavy workloads. Simply increasing the workload amount can lead to heavy resource con-

sumption and degrades performance.
Query Triggered: These query-triggered anomalies only influence specific queries instead of the

general workload. We select four typical anomalies related to indexes [30], vacuum, and locks [12].
(1) Missing indexes. The select queries on large tables may slow down due to index missing.
(2) Too many indexes. The performance of the insert, delete, and update queries may slow down

because they need to update the indexes synchronously.
(3) Vacuum. The vacuums refer to the empty spaces of the deleted data in common disk-based

databases. They can lead to unnecessary I/O consumption and typically cause performance degra-
dation in PostgreSQL because it always appends new data to the end of the tables [12]. In MySQL,
the new data is inserted into the vacuums, not causing performance anomalies [48].

(4) Lock waits. The queries with writes require the locks, which can increase the latency.
There are still some anomaly types that are not covered by the listed ones according to the

database service environment, such as the poorly-written queries, which are related to the query
design of specific database services and are difficult to generalize to various environments. These
anomalies can still be categorized into the mentioned performance influence factors. Based on
these factors, we allow the users of DBPA to extend new anomaly types as needed.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:6 Shiyue Huang et al.

3.2 Requirements
Before presenting the design of DBPA, we discuss the requirements of a reliable benchmark for
database performance anomalies as guidance. We consider both the challenge issues in Section 1
and practical demands [15, 33], and propose the following six requirements.
(1) Consistency. The reproduction procedures should consist with the root causes of the anomalies.
(2) Correctness. It is possible that the designed reproduce procedure does not cause the occurrence

of the expected anomaly. The reproduction is correct only if the performance degradation
appears.

(3) Diversity. The benchmark should involve as many influence factors, i.e., scenarios for the
monitoring data as possible.

(4) Support for compound anomalies. The benchmark should support different combinations of
anomalies.

(5) Extensiveness. Various anomaly types should be supported and the reproduction procedure
should be able to generalize to new anomaly types.

(6) Effectiveness. The monitoring metrics that we collect should be effective to help performance
anomaly diagnosis.

In the rest of the paper, we showhowDBPAmeets the requirements by describing the details of the
anomaly reproduction and dataset construction, followed by validation experiments. Specifically, we
carefully design the reproduction procedures and strive to reproduce the root causes for anomalies
(consistency) with a verification of the performance degradation (correctness). Andwe set up different
system environments, background workloads, and configurations for each anomaly type (diversity)
and design a generation algorithm (support for compound anomalies). For extensiveness, we provide
specific instructions for supporting new anomaly types. And finally, we validate the effectiveness,
diversity, and support for compound anomalies of DBPA through experiments.

4 REPRODUCTION OF COMMON ANOMALIES
In this section, we first introduce the backgroundworkloads, then show the reproduction procedures
of the common anomalies in three categories.

4.1 Background Workloads
Before reproducing the anomalies, we should design the background workloads as the simulation
of a normal database service environment. The background workloads can also be used to generate
normal data in contrast to the anomalies.

We use some OLTP benchmarks from OLTPBench [10] as background workloads. The selected
benchmarks include TPC-C, TATP, Smallbank, and Voter. We limit the number of terminals to make
the hard disk throughput less than 60 percent of the maximum. This ensures that the background
workloads do not suffer from I/O saturation.

After designing the backgroundworkloads, we design the reproduction procedures of the anomaly
types. Table 2 provides an overview of the anomaly categories, types, reproduction methods, and
verification methods. The selected reproduction and verification methods are suggested by our
industry partner based on the DB environments and the tolerance of performance degradation.

4.2 Database Environment Anomalies
To reproduce database environment anomalies, we set up an anomalous environment and run the
background workload, which should be influenced by the environment and become anomalous. To
verify the correctness, we compare the average throughput of the workload in the normal/anomalous
environments.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:7

Table 2. Selected Anomaly Types.

Category Type Reproduction Verification

Database Small Shared Buffer Modify the Knob Throughput < 10% Normal
Environment I/O Saturation Inject I/O Ops Throughput < 10% Normal

Workload Highly Concurrent Inserts Inject Queries Latency > 1.5× Normal
Amount Highly Concurrent Commits Inject Queries Wait Events Detected

Heavy Workloads Inject Workloads Latency > 1.5× Normal

Query Missing Indexes Inject Queries Latency > 20× Normal
Triggered Too Many Indexes Inject Queries Latency > 1.5× Normal

Vacuum Inject Queries Latency > 1.5× Normal
Lock Waits Add Locks Wait Events Detected

Small Shared Buffer. According to the experience of some DBAs from the industry, an appro-
priate size of the shared buffer is around 25 ~40 % of the available memory of the instances. To
reproduce the anomaly, we set the knob ‘shared_buffers’ to a small value, which is decided by ob-
serving the corresponding throughput [65]. If the throughput is lower than the normal throughput
by 10%, we consider the reproduction to be correct.

I/O Saturation Due to Other Processes. We use stress-ng 1, a tool to stress operating systems
to inject I/O consumption. If the throughput of the background workload is lower than the normal
throughput by 10%, we consider the reproduction to be correct.

4.3 Workload Amount Anomalies
The general reproduction procedure of workload amount anomalies is different from that of database
environment anomalies. We continuously run the background workload, and inject a large amount
of the specific workload. To verify the correctness, we construct a baseline that injects a small
amount of the specific workload, which is still considered normal. Then we compare the average
latency of the injected workload between the reproduction and the baseline. For certain anomaly
types, we can also check the wait events.
Highly Concurrent Inserts.We create an empty table and inject insert queries to that table

with high concurrency. To make a difference from highly concurrent commits, we commit only
once for several inserts. We take single-thread inserts as the baseline, and check the latency of the
injected inserts for correctness, which should be more than 1.5 times longer than the baseline.

Note that we only insert into one specific table. The column number and the column size of the
table are part of the configuration parameters of this anomaly, which will be discussed in Section
5.2. The scenario of multiple inserted tables is considered as compound anomalies of the same type
because of the various combinations of the table shapes, which will be discussed in Section 5.4.

Highly Concurrent Commits. We still create an empty table and inject insert queries, but we
commit for every insert. To avoid the bottleneck of file expansion speed, which is the root cause
of highly concurrent inserts, we set the data size of insertion to be small. We use the queries that
commit once for several inserts as the baseline and valid the correctness by querying the active
wait events for the WALWriteLock. In PostgreSQL, we execute select * from pg_stat_activity where
wait_event = ‘WALWriteLock’ and state <> ‘idle’;. The result of the baseline should be empty but
that of the reproduction should not.

1https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:8 Shiyue Huang et al.

Heavy Workloads. We inject the background workloads from OLTPBench with a higher
concurrency degree. If the average latency of the injected workloads is more than 1.5 times longer
than the baseline of the normal background workload, we consider the reproduction to be correct.

4.4 Query-triggered Anomalies
For query-triggered anomalies, the general reproduction procedure is similar to database environ-
ment anomalies. The only difference is that we need to construct the trigger for the anomalous
queries at the beginning. To verify the correctness, we construct a baseline without the trigger for
comparisons.
Missing Indexes. Missing indexes can lead to a full table scan on a large table, which is the

main cause of the performance anomaly. So we first create a large table without the primary key
index. Then we run the background workload, and inject some select queries that have filtering
conditions on the primary key. As a baseline for the correctness, we build the primary key index
and inject the same queries. If the average latency of the anomalous queries is more than 20 times
longer than the baseline, we consider the reproduction to be correct. We choose a large number
because a full table scan is significantly slower than an index scan on a large table.
Too Many Indexes. Building too many indexes can also cause a performance anomaly since

the insert, delete, and update operations on indexed columns causes updates of the indexes [30]. To
reproduce the anomaly, we first create a table of normal size, and build indexes on several columns.
Then we run the background workload, and inject update queries. As the baseline, we remove all
indexes except the primary key index, and inject the same queries. The correctness is validated if
the average latency of the anomalous updates is more than 1.5 times longer than the baseline.

Vacuum. Vacuums refer to the space of the deleted rows in the tables. In PostgreSQL, new data is
inserted at the end of the tables instead of the vacuums [12], so the space consumption can be much
larger than the size of valid data. The performance of a scan on a table with too many vacuums
degrades because of the unnecessary I/O consumption. To reproduce this anomaly, we first create
a large table and delete a certain percentage of data at the beginning of the table, which ensures
the existence of vacuums. Then we drop the primary key index if it exists so that the select query
on this table will make a full table scan instead of an index scan. The reason for avoiding index
scans is that the influence of vacuums is negligible for index scans. It differs from the reproduction
of missing indexes by a smaller size of valid data. Next, we run the background workload and
inject some select queries. To construct a baseline, we create a table with the same size of data but
without vacuums. If the average latency of the anomalous queries is more than 1.5 times longer
than the baseline, the correctness is verified.
Lock Waits. The reproduction of lock waits is slightly different. To trigger anomalous lock

waits, we start a transaction with a full table update on a medium-sized table (i.e., around 10% of
the database size) of the background workload. The transaction is not committed and we start
the background workload. The updates on that table should wait for the lock [64]. We use the
normal background workload as the baseline and the existence of active wait events validates the
correctness.

4.5 Extension to New Anomaly Types
Users can extend our reproduction procedures to new anomaly types. For example, if a user wants to
add an anomaly for a certain-form poorly-written queries, the general procedure of query-triggered
anomalies should be followed. A table for that query should be created first. Then the background
workload starts and the anomalous queries are injected. To validate the correctness, a baseline
should be performed with the corresponding well-written query. If the average latency of the
anomalous queries is more than certain times longer than the baseline, the correctness is ensured.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:9

5 DATASET CONSTRUCTION
With the help of the reproduction procedures, we can construct a reliable dataset for anomaly
diagnosis. In this section, we first introduce the collection of the monitoring metrics. Then we
show how we construct the dataset with diversity in both the environments and the configurations.
Next, we introduce how users can generate a dataset with DBPA in a new environment. Finally, we
show how DBPA supports compound anomalies.

5.1 Monitoring Metrics
The data we collect should be helpful for performance anomaly diagnosis. The related work on
database anomaly diagnosis takes either the monitoring metrics, the debug logs, or the query-level
time metrics as the input of the diagnosis algorithm. The collection of the debug logs [18, 19, 46]
can significantly influence the performance of the database system. To collect the time metrics [9,
26, 27], the database should write a query-level execution log, largely downgrading the database
performance. So the most practical and commonly-used data for performance anomaly diagnosis is
the monitoring metrics, which are also suitable for the machine learning algorithms that we want
to apply.
All the monitoring objects and metrics we used are listed in Table 3. According to the related

work [41, 43], the monitoring metrics for anomaly diagnosis should include both the operating
system metrics and the database metrics. The operating metrics refer to the resources such as I/O,
CPU, memory, and network, and other statistics such as the number of interrupts, locks, processes,
and sockets. The database metrics are acquired by querying the database system, including the usage
of the buffer, the database size and its changes, the connection status, the number of transactions,
the status of the locks, and the configuration values. We adopt an open-source tool, Dool 2, to
collect the operating system metrics and design some plugins for Dool to support the collection
of database metrics. Each sample of the collected data consists of a series of the values of all the
metrics at each timestamp, and the interval between two timestamps is five seconds.

5.2 Diversity
The diversity of data is beneficial to the generalization ability of machine learning models [40, 50].
Given test data from a new scenario, the machine learning model is more likely to make correct
predictions if its training data is more diverse. To collect data with high diversity, we set up different
scenarios for each anomaly type.
The scenario of an anomaly includes both the environment and the configurations. For the

environments, we set up four background workloads as mentioned in Section 4.1 and four system
environments as follows. To set up the system environments, we use a Ubuntu 16.04 server with
96 logical cores of CPU and 512 GB memory as a physical machine and use different dockers to
simulate different system environments. Each docker has an operating system of Ubuntu 16.04 and
a DBMS of PostgreSQL 12.9. We set up four dockers with different CPU and memory limitations,
i.e., 32 / 64 cores of CPU and 128 GB / 256 GB memory. We adjust the database configurations of
the shared buffers according to the available memory.
For the configurations, we use different parameters for each anomaly type. For database envi-

ronment anomalies, we configure different values for the environmental factors. For workload
anomalies, a new table usually needs to be created, which has the number and the size of the
columns as parameters. If there are scans on that table, the number of rows should also be a param-
eter. For injected queries, the concurrency degree is a parameter. There are also other parameters
for specific anomaly types, such as the number of indexes for the anomaly of too many indexes,

2https://github.com/scottchiefbaker/dool

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:10 Shiyue Huang et al.

Table 3. Monitoring Metrics.

Object Metrics Description

cpu/total usr, sys, idl, wai, stl CPU Usage
dsk/total read, writ Disk I/O Speed
net/total recv, send Network Speed
paging in, out Memory Pages
memory used, free, buff, cach Memory Usage
system int, csw Interrupts & Context Switches
procs run, blk, new Process Counts
load avg 1m, 5m, 15m Avg Workload in Given Time
swap used, free Swap Usage
interrupts interrupts Interrupt Counts
io/total read, writ I/O Counts
async #aio Asynchronous I/O Counts
filesystem files, inodes File System
sysv ipc msg, sem, shm System V for IPC
file locks pos, lck, rea, wri File Locks
sockets tot, tcp, udp, raw, frg Socket Counts
tcp sockets lis, act, syn, tim, clo TCP Socket Counts
udp lis, act UDP Socket Counts
unix sockets dgm, str, lis, act Unix Socket Counts
vm majpf, minpf, alloc, free Virtual Memory Usage
advanced vm stal, scanK, scanD, pgoru, astll Advanced Virtual Memory
zones memory d32F, d32H, normF, normH Memory Zone Usage

dbsize size, grow, insert, update, delete Database Size
conn conn, %con, act, LongQ, LongX, etc. Database Connections
locks Locks Database Lock Counts
transactions comm, roll Database Transaction Counts
pg_buffer clean, back, alloc, heapr, heaph, ratio PostgreSQL Buffer Usage
pg_settings shared_buffers, max_connections, PostgreSQL Configurations

work_mem, autovacuum_work_mem,
autovacuum_max_workers, etc.

mysql_buffer data, free, dirty, flushed, readr, reads, ratio MySQL Buffer Usage
mysql_settings innodb_buffer_pool_size, MySQL Configurations

innodb_buffer_pool_instances,
max_connections, etc.

and the percentage of deleted data for the anomaly of vacuums. We do not consider the number of
the tables as a parameter because there are too many combinations of the table shapes. Instead,
we consider the scenario with multiple tables as compound anomalies, which will be discussed in
Section 5.4.

We set various values for every parameter and construct the dataset. For each configuration, we
repeat the reproduction procedure for specific times according to the number of configurations of
the anomaly type. The data sizes are shown in Table 4. The interval between two timestamps is five

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:11

Table 4. Data Sizes of Single Anomalies.

Anomaly Type Samples Timestamps

Small Shared Buffer 64 768
I/O Saturation 240 2880

Concurrent Inserts 2304 27648
Concurrent Commits 2304 27648
Heavy Workloads 720 8640
Missing Indexes 1152 13824
Too Many Indexes 3072 36864

Vacuum 2304 27648
Lock Waits 120 1440
Normal 2880 34560

seconds. The duration of one sample is around one minute long, i.e., twelve timestamps, except for
small shared buffer which is ten minutes long.

5.3 Benchmark Architecture and APIs
The architecture of DBPA consists of two parts: the reproduction framework and the evaluation
framework.
The reproduction framework is shown in Figure 1. It serves the users that want to generate a

dataset with DBPA in a new environment. The components are separated on two instances, one
as the database server and the other as the client. On the database server, the DBMS, Dool, and
stress-ng are installed. On the client, the OLTPBench is installed and the reproduction scripts of the
anomalies are placed. For each anomaly type, there is a Shell script as the reproduction controller,
which controls OLTPBench, Dool, stress-ng, and the Python scripts for DB operations. It records the
execution logs.
We provide a codegen tool to generate the reproduction scripts from XML files with four main

tags: env, table, workload, and inject. It serves the users in two ways. First, users can easily design
the scenario combinations for each anomaly by modifying the XML tags. Second, users can extend
DBPA to new anomaly types based on the XML templates.

In the evaluation framework, the data on the server and the logs on the client are processed into
a dataset. Then the algorithms are applied to evaluate the metrics like accuracy, precision, recall,
F1 score, etc. To support user-defined algorithms, we provide a basic interface with init, train, and
predict functions. Both traditional and learning-based algorithms are supported.

5.4 Compound Anomalies
In real-world databases, it is common for several types of anomalies to occur at the same time, or
for the same type of anomaly to occur on several tables. We consider them as compound anomalies
that require to be supported by the benchmark. A challenge is that there are too many possible
combinations of anomalies and it is unaffordable to conduct the reproduction procedure for all
the combinations. Therefore, to support compound anomalies, we provide both a dataset and a
generation algorithm that can learn compound anomalies from existing data.
Dataset. The dataset contains a few combinations and each of them involves two anomalies.

For the validation experiments in Section 6.3, we design two groups of combinations. Each group
contains three combinations, A + B, A + C, and B + C, where A, B, and C are three anomaly types.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:12 Shiyue Huang et al.

<env> ... </env>
<table>

<ncolumns>
10,20

</ncolumns>
...

</table>
<workload>

<bench>
tpcc,tatp

</bench>
...

</workload>
<inject>

...
</inject>

DBMS
Dool

Monitor

Data

*.xml

Record

stress-ng

Codegen
Input Generate

start_dool
for ncolumns in 10 20; do

...
python create_table.py --ncolumns $ncolumns ...
for bench in tpcc tatp; do

oltpbenchmark -b $bench ...
for nclient in ...; do

python inject_sqls.py --nclient $nclient ...
done

done
done
stop_dool

*.sh
db.connect(...)
...
c.execute('INSERT INTO ... ')

*.py
OLTPBench

Inject queries Background
workload

Log

Record

Server

Client Reproduction controllerConfigs

DB operations

Fig. 1. Reproduction Framework of DBPA

The anomalies in the first group are from the same category, and those in the second are from
different categories. In addition, we have another three combinations to make sure that the dataset
covers all the supported anomalies. All the combinations and their data sizes are listed in Table 5,
where the two groups are listed first.

Generation Algorithm. For other combinations that involve two or more anomalies, we provide
a generation algorithm. Users can select appropriate combinations according to the application
scenarios and generate the data with our algorithm. It takes two slices of anomalous data and a slice
of normal data as the input and predicts a slice of data of the compound anomalies which means
that the two input anomalies happened at the same time. The normal and anomalous data slices
should be collected with the same system environment and background workload. To generate
combinations that involve more than two anomalies, the user can simply input the data slices of
compound anomalies.

There are some naive algorithms to combine the two slices of anomalous data, such as average,
maximum, and minimum. These algorithms could have significant errors, especially for the metrics
that have a significant difference between the normal and the anomalous. To improve the quality
of the generated data, we propose to use learning-based regression models. The models take two
anomalous data slices and one normal data slice as input and predict the value of data slices for
the compound anomalies. We select Random Forest [4], XGBoost [8], and LightGBM [28] as the
regression models, which generally have small errors in experiments.

Users can prepare the training data for the models by taking all the involved single anomalies and
some normal data as features and taking the compound anomalies that cover the target anomaly
types as labels. For instance, they can use the single anomalies of A, B, and C with some normal

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:13

Table 5. Data Sizes of Compound Anomalies.

Anomaly X Anomaly Y Minutes MB

Missing Indexes Lock Waits 192 11.72
Missing indexes Too many indexes 512 5.67
Too many indexes Lock Waits 192 12.30
Too many indexes Heavy Workloads 512 13.41
Too many indexes I/O Saturation 256 6.46
Heavy Workloads I/O Saturation 256 6.28
Missing indexes Concurrent Commits 768 18.20
Too many indexes Vacuum 512 5.69
Small Shared Buffer Concurrent Inserts 512 12.71

data as the features, and use the compound anomalies of A + B and A + C as the labels, to train a
model to generate the data of B + C.

To ensure small errors, we do not predict multiple metrics with one model. There is a high cost
of computation and storage if we fit models for all the metrics. To improve the efficiency of the
generation process, we propose to combine the regression models with naive algorithms. For each
monitoring metric, We use the anomaly detection module of DBSherlock [66] to check whether it
has a significant difference between the normal and the anomalous. For those without a significant
difference, we simply use the naive average values of the anomalies. For the rest, we employ the
machine learning models. Specifically, we use Random Forest for anomalies of the same category
and use LightGBM for those of different categories, because they generally have smaller errors.

6 VALIDATION EXPERIMENTS
Our designed anomalies reproduction procedures ensure that DBPA meets the requirements of
consistency, correctness, and extensiveness. The rest of the requirements are related to the quality of
our dataset. In this section, we show the results of the validation experiments on these requirements,
i.e., the effectiveness of monitoring metrics, the diversity of scenarios, and the support for compound
anomalies.

6.1 Validation on Effectiveness
In this part, we check the effectiveness of the monitoring metrics by verifying the differences
between the data of each anomaly type and the normal data. First, there should be a significant
difference between the normal and the anomalous. Second, such differences should be explicable
according to the anomaly types. Finally, different anomaly types should have different important
metric patterns that distinguish the anomalies from each other.

For the experiments, we first select the important metrics based on the XGBoost [8] models. We
fit one model for each anomaly type. The model is trained for one-vs-rest binary classification
to distinguish between the specific anomaly type and others (including the normal). We employ
XGBoost as the model, which can generate the importance weight of each input feature, i.e., each
monitoring metric. Specifically, the reduction of Gini indexes on the split points of the tree models
in XGBoost is used to generate the weights, and we can find out the important metrics based on the
weights. We do not use the anomaly detection algorithms in the related work of database anomaly
diagnosis like DBSherlock [66], because they only focus on the differences between the normal and

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:14 Shiyue Huang et al.

0 5 10 15 20 25 30 35

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) Small Shared Buffer
dsk_total_writ
io_total_writ
total_cpu_usage_idl

0 2 4 6 8 10 12 14

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) I/O Saturation
net_total_recv
postgresql_transactions_comm
total_cpu_usage_wai

0 2 4 6 8 10 12 14

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(c) Concurrent Inserts
postgresql_dbsize_grow
total_cpu_usage_wai
memory_usage_cach

0 2 4 6 8 10 12 14

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(d) Concurrent Commits
memory_usage_free
memory_usage_buff
filesystem_inodes

0 2 4 6 8 10 12 14

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(e) Heavy Workloads
filesystem_inodes
memory_usage_used
postgresql_dbsize_grow

0 2 4 6 8 10 12 14

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(f) Missing Indexes
memory_usage_free
memory_usage_cach
total_cpu_usage_usr

0 2 4 6 8 10 12

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(g) Too Many Indexes
dsk_total_writ
net_total_recv
postgresql_transactions_update

0 2 4 6 8 10 12 14

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(h) Vacuum
load_avg_15m
memory_usage_used
zones_memory_normF

0 2 4 6 8 10 12 14

Timestamps
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(i) Lock Waits
postgresql_locks_Locks
total_cpu_usage_wai
dsk_total_writ

Fig. 2. Top-3 Metrics for Each Anomaly Type.

the anomalous, and omit the differences between different anomaly types. The one-vs-rest XGBoost
models can meet both of the requirements.
We show the plot of the top-3 important metrics in Figure 2 for each anomaly type. The x-axis

represents the timestamps and the y-axis represents the metrics normalized to the range 0-1. The
junction of the white and the gray areas indicates the timestamp that we start to reproduce the
anomaly, and the grey background indicates the region of anomaly. We show the results and
explanations of the differences as follows.
Database Environment Anomalies. The results of small shared buffer are shown in Figure

2 (a). The top-3 metrics are the data size of disk writes (dsk_total_writ), the count of I/O writes
(io_total_writ), and the CPU idle time (total_cpu_usage_idl). All the metrics become more unstable
with a small shared buffer. The count of I/O writes generally increases because the count of swap-
outs increases for the shared buffer. The data size of disk writes does not significantly increase
because the average throughput of transactions is lower than normal.
For I/O saturation, the top-3 metrics are the network receive speed (net_total_recv), the rate of

committed transactions (postgresql_transactions_comm), and the CPU time that waits for I/O (to-
tal_cpu_usage_wai). There are decreases in both ‘net_total_recv’ and ‘postgresql_transactions_comm’
because the throughput is lower than normal, and ‘total_cpu_usage_wai’ increases because of the
I/O bottleneck.
Workload Amount Anomalies. As shown in Figures 2 (c), (d), and (e), all the anomalies of

this category consume more resources due to the increase in the workload amount. The signif-
icant metrics include the growth rate of database size (postgresql_dbsize_grow), the CPU time
of I/O waits (total_cpu_usage_wai), the memory metrics (memory_usage_cache for disk cache,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:15

memory_usage_free for free memory, and memory_usage_buffer for buffer cache), and the inode
number in the file system (filesystem_inodes).

For highly concurrent inserts, the expansion of the data file is the bottleneck, so ‘total_cpu_usage_wai’
increases, and ‘filesystem_inodes’ is not significant. For highly concurrent commits, many transac-
tions of insertions are blocked, so ‘postgresql_dbsize_grow’ is not significant. For heavy workloads,
both ‘filesystem_inodes’ and ‘postgresql_dbsize_grow’ are significant.
Query-triggered Anomalies. Both missing indexes and vacuum have full table scans that in-

crease the consumption of resources as shown in Figures 2 (f) and (h). For missing indexes, the free
memory (memory_usage_cache) decreases, while the usage of disk cache (memory_usage_cache)
and the CPU time in the user mode (total_cpu_usage_usr) increase. For vacuum, the average
system workload in 15 minutes (load_avg_15m) and the used memory (memory_usage_used)
increases, while the normal free memory zones (zones_memory_normF) decrease. Note that ‘to-
tal_cpu_usage_usr’ is not a significant metric for vacuum because computations do not operate on
the vacuum of the data blocks.

For Too many indexes and Lock waits, the index modifications and the waits for locks slow down
the queries, so the resource consumption is lower as shown in Figures 2 (g) and (i). The number of
update transactions (postgresql_transactions_update) is significant for Too many indexes and the
number of locks (postgresql_locks_Locks) is significant for Lock waits, which consists with their
root causes.
The results of the experiments show significant differences between anomaly types, which is

explicable according to our analysis and validate the effectiveness of the monitoring metrics in
DBPA.

6.2 Validation on Diversity
We have two groups of diversity validation experiments. One is to check whether the DBPA dataset
has significant diversity. The other is to validate whether the diverse dataset is beneficial to the
generalization abilities of the machine learning models for anomaly diagnosis. We focus on the
background workloads and system environments for diversity validation, and we check the accuracy
of diagnosis as the indicator.

First, we take the four background workloads for validation, where we mix the data of different
system environments and uniformly split the training/test sets. We first train a multi-class classifi-
cation model of XGBoost with the data from each workload and test its accuracy on every other
workload. As a baseline, we also test the accuracy where we use the same workload for training and
test. The training set contains 60 percent of the data and the test set contains the rest 40 percent.
Then we train a model with the data from three scenarios and test the rest. The results are shown in
Table 6. If the model is trained on one workload and tested on another, the accuracy is low, which
validates the diversity of the data. If the model is trained on three workloads, the accuracy (column
‘other’ in Table 6) is much higher, which shows the benefits of the diversity to the generalization
abilities of the models.

Then we focus on the four system environments, where we mix the data of different background
workloads. The results are also shown in Table 6. We use the number of CPU cores and the memory
size in GB as the identifiers of each environment. The accuracy is generally much lower than in the
previous experiment, which indicates that the difference in the data is more significant for different
system environments. The accuracy improvement due to the diversity of the training data is also
more significant, which validates the benefits on generalization.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:16 Shiyue Huang et al.

Table 6. Diversity Validation with Different Environments.

Test Training
Workloads TPC-C TATP Voter Smallbank Others

TPC-C 0.9499 0.8780 0.7718 0.7908 0.8876
TATP 0.8091 0.9458 0.8307 0.8312 0.9580
Voter 0.7925 0.8597 0.9502 0.8609 0.9434

Smallbank 0.7353 0.8208 0.8351 0.9500 0.911

Systems 32_128 32_256 64_128 64_256 Others

32_128 0.9879 0.1723 0.0554 0.1658 0.5123
32_256 0.2289 0.9809 0.2069 0.1905 0.7000
64_128 0.2913 0.4294 0.9943 0.4498 0.6089
64_256 0.2590 0.1557 0.3934 0.9822 0.6714

6.3 Validation on Compound Anomalies
In this part, we validate our generation algorithm for compound anomalies. First, we evaluate the
prediction accuracy of our generation algorithm by comparing the similarity between the generated
data and real data. Then we check the performance of diagnosis on both of the data.
As mentioned in Section 5.4, we have two groups of compound anomalies for the experiments.

In the first group, we have missing indexes, lock waits, and too many indexes, which all belong
to the query-triggered anomalies. We select too many indexes + lock waits for test, and train the
machine learning models for the generation with the other two combinations. In the second group,
we have too many indexes, heavy workloads, and I/O saturation, which belong to different anomaly
categories. We select too many indexes + heavy workloads for test and use the rest for training.

To compare the similarity between the generated data and real data, we select the top-10 important
metrics based on DBSherlock as representatives. These metrics have a significant difference between
the normal and the anomalous, and they are supposed to be generated with machine learning
models. We select Random Forest (RF) [4], XGBoost (XGB) [8], and LightGBM (LGBM) [28] as the
machine learning models because they are popular tree-based ensemble models that are light-
weighted and can be trained fast. We normalize the data and use mean square error (MSE) as the
evaluation metric.

As shown in Tables 7 and 8, machine learning algorithms generally have low errors. For anomalies
of the same category, Random Forest generally has a better performance. For those of different
categories, LightGBM generally performs better. Based on this observation, we select the machine
learning models for compound anomaly generation.
Then we verify the diagnosis performances on the generated data. We train Decision Tree

classifiers based on the data with single anomalies and predict the categories of the generated
compound anomalies and the real compound anomalies. We use precision, recall, and F1 as the
metrics for the predictions. Precision refers to the ratio of true positive samples to the positive
samples. Recall refers to the ratio of detected samples to the anomalous samples. F1 Score refers
to the harmonic mean of precision and recall, which indicates the general performance. Similar
results between the generated and the real data indicate a good generation performance.

The results are shown in Table 9. We observe that, on the diagnosis task, there is no significant
difference between the generalized data and the real data, which validates the performance of our
generation algorithm for compound anomalies.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:17

Table 7. MSE of Compound Anomalies (Same Category).

Rank Avg Max Min RF XGB LGBM

1 1.6285 1.0894 3.4105 1.0725 1.6364 1.2711
2 3.1168 6.7090 2.7783 2.1952 3.8541 2.1309
3 0.6470 1.6380 0.7032 0.0468 0.0701 0.0645
4 0.6964 0.6568 1.6933 0.0542 0.0646 0.0563
5 1.1217 2.3334 0.7316 5.2703 44.0261 4.2365
6 1.8804 3.2446 1.3738 0.5557 0.4802 0.6490
7 0.9023 0.4746 3.9131 0.0010 0.0025 0.0027
8 0.0439 0.0333 0.1222 0.4325 0.4491 0.4304
9 1.0175 3.6749 0.1494 1.1214 1.0698 1.1196
10 1.4475 0.3476 4.8141 2.0628 1.1948 2.4158

Table 8. MSE of Compound Anomalies (Different Categories).

Rank Avg Max Min RF XGB LGBM

1 2.1442 2.9378 2.4112 2.0799 2.1418 2.0231
2 1.6362 2.7933 1.5770 1.3757 1.4091 1.3370
3 1.0522 2.2178 0.6786 0.0065 0.0054 0.0055
4 0.9560 0.6409 2.0743 0.0045 0.0021 0.0019
5 2.1493 4.1918 1.6205 1.6201 1.6306 1.5903
6 1.9014 2.0937 2.8961 1.8216 1.9533 1.9092
7 1.3060 0.2265 4.9390 0.0070 0.0072 0.0072
8 2.5597 3.7246 4.3570 4.2481 4.2516 4.2576
9 2.6503 2.9907 3.2142 2.1655 2.2320 2.0205
10 3.6089 4.6234 3.4771 3.0750 3.1590 3.1085

Table 9. Diagnosis with Generated Compound Anomalies.

Category Test Type P R F1

Same Generated 0.8214 0.4792 0.6053
Real 0.8384 0.5000 0.6264

Different Generated 1.0000 0.4375 0.6087
Real 0.9447 0.5176 0.6688

7 EVALUATION EXPERIMENTS
Based on our datasets, we evaluate some common algorithms to show the functionality of DBPA.
The evaluation experiments include anomaly detection, diagnosis of single anomalies, diagnosis of
compound anomalies, and evaluation on MySQL databases.

7.1 Anomaly Detection
For anomaly detection, we evaluate common unsupervised machine learning algorithms. These
algorithms aim at distinguishing between normal and abnormal data instead of recognizing the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:18 Shiyue Huang et al.

Table 10. Evaluation on Anomaly Detection.

Train % 40% 60% 80%
P R F1 P R F1 P R F1

IF 0.8074 0.5077 0.6234 0.8101 0.6065 0.6934 0.8046 0.5324 0.6404
OC-SVM 0.6654 0.9999 0.7990 0.6614 0.9998 0.7961 0.6686 1.0000 0.8013
LOF 0.7972 0.7529 0.7744 0.7968 0.7634 0.7797 0.7873 0.7585 0.7726
SVDD 0.6533 0.9441 0.7721 0.6489 0.9449 0.7693 0.6569 0.9515 0.7772

types of the anomalies. They are trained on normal data and tested on both normal and anomalous
data. They are different from the diagnosis algorithms, which recognize the anomaly types and are
trained on both normal and anomalous data.

We refer to the anomaly detection benchmark proposed by Emmott et al. [15], and select Isolation
Forest (IF) [36], One Class SVM (OC-SVM) [56], Local Outlier Factor (LOF) [5], and SVDD [63] for
evaluation.We do not evaluate the algorithms for database anomalies in the related work [23, 41, 66],
because they only focus on every single monitoring metric. Instead, we evaluate the ability to
distinguish the normal and anomalous data slices that contain all the metrics.
The input of the algorithm is the data slices from the samples in DBPA dataset. Each slice is a

sequence of monitoring metrics for 10 timestamps, slightly shorter than the length of the anomalous
samples, which is 12 timestamps. The output of the algorithm is a boolean value indicating whether
the data is anomalous. We use precision, recall, and F1 Score as evaluation metrics, which are
introduced in Section 6.3. We evaluate the anomaly detection algorithms with different settings of
the training set ratio.

The results are shown in Table 10. The influence of the training set ratio is not significant. One
Class SVM has the best overall performance with the highest F1 scores. Isolation Forest has a low
recall, indicating a high possibility of omissions. One Class SVM and SVDD have low precision,
indicating a high possibility of false alarms. Local Outlier Factor has medium precision and recall.

7.2 Diagnosis of Single Anomalies
We consider the diagnosis of single anomalies as a classification task, so we select some common
machine-learning-based classification models [40], including Logistic Regression (LR), Multilayer
Perception,Decision Tree (DT), Random Forest (RF),XGBoost (XGB), and LightGBM (LGBM).We do not
use deep learning models with complex neural networks because it is difficult to select appropriate
hyper-parameters. We also evaluate some diagnosis algorithms for database anomalies. We select
AutoMonitor (AutoM) [23] and DBSherlock [66] in the related work for the experiments because
they support arbitrary anomaly types. We do not evaluate ISQUAD [41] because it is designed for
intermittent slow queries which have both spikes and level shifts [6, 52] in the monitoring metrics.
We mainly focus on continuous performance regressions instead of intermittent ones, and we do
not have spikes in the monitoring metrics for most of the anomalies.
AutoMonitor optimizes the K-Nearest-Neighbor (KNN) algorithm with a modified distance

between the data slices, where each monitoring metric has a weight related to the anomaly types. In
comparison to AutoMonitor, we also have the naive KNN for evaluation. Note that the performance
of AutoMonitor and KNN can be strongly influenced by data imbalance. So we apply different
weights to different anomaly types according to the data size. The diagnosis algorithm of DBSherlock
requires a long time to build causal models for all the data, which is unaffordable for common users.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:19

Table 11. Evaluation on Diagnosis Accuracy.

Ratio 40% 60% 80%

LR 0.8697 0.8769 0.8744
MLP 0.8801 0.8944 0.8987
DT 0.8874 0.9054 0.9088
RF 0.9441 0.9639 0.9767
XGB 0.9733 0.9864 0.9897
LGBM 0.9651 0.9829 0.9876

AutoM 0.7503 0.7714 0.8112
KNN 0.7404 0.7814 0.8112

So we do not evaluate DBSherlock in the full-data experiments, but have another experiment with
different dataset sizes.
We evaluate the accuracy of classification with different settings of the training set ratio. The

results are shown in Table 11. The training set ratio does not have a significant influence except for
AutoMonitor and KNN. The tree-based ensemble models (RF, XGB, and LGBM) generally perform
better than other algorithms. AutoMonitor generally performs better than naive KNN, but still
worse than the machine learning models that we select.

We also present the diagnosis performance of each anomaly type with 60 percent training
data. We use precision, recall, and F1 as the metrics, and the results are shown in Table 12. The
relatively high scores indicate the effectiveness of the monitoring metrics. Some of the anomalies
are naturally easy to recognize, but some are not. For the database environment anomalies and the
workload amount anomalies, all the machine learning models have high precision, recall, and F1
scores. AutoMonitor generally performs worse than these models, but better than the naive KNN.
For the query-triggered anomalies except for lock waits, the diagnosis performance is generally
worse. XGBoost and LightGBM have the best performance, followed by Random Forest. The nearest-
neighbor-based algorithms still generally perform worse than the machine learning models we
select except for Logistic Regression. For lock waits, KNN fails because the metrics for locks are
not significant among the various metrics. AutoMonitor performs better than KNN because it has
higher weights for the important metrics. The other algorithms have better abilities to capture the
feature of the metrics for locks, so they have high precision, recall, and F1 scores.

We have another evaluation experiment for DBSherlock with small datasets, because it needs to
build one causal model for each piece of data and the time is unaffordable with the full dataset. We
uniformly select 40, 80, and 120 pieces of data for each anomaly type. We use 70 percent of the
data to construct the models for the algorithms, and the rest 30 percent for the accuracy test. We
compare the accuracy and model construction time of DBSherlock (DBS) with XGBoost (XGB) and
LightGBM (LGBM), which generally have a better performance in the previous experiment.
The results are shown in Table 13. With a heuristic diagnosis algorithm, DBSherlock has lower

accuracy but significantly higher time cost than XGBoost and LightGBM. Besides, all the algorithms
perform better with a larger dataset, and the improvements in XGBoost and LightGBM are more
significant. This indicates that the machine learning algorithms need a large dataset to achieve a
good performance.
For further discrimination between different machine learning algorithms, we test their gener-

alization ability with the data from different scenarios for training and test. Specifically, we take
3 background workloads (TPC-C, TATP, and Voter) and 3 system environments (32_128, 32_256,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:20 Shiyue Huang et al.

Table 12. Evaluation on Diagnosis of Each Anomaly Type.

Small Shared Buffer I/O Saturation Concurrent Inserts
P R F1 P R F1 P R F1

LR 0.998 1.000 0.999 1.000 0.984 0.992 0.997 0.996 0.997
MLP 0.997 1.000 0.999 0.990 0.995 0.992 0.997 0.996 0.997
DT 0.994 0.998 0.996 0.945 1.000 0.972 0.999 0.990 0.995
RF 0.998 1.000 0.999 1.000 1.000 1.000 1.000 0.999 1.000
XGB 0.998 0.998 0.998 0.995 0.995 0.995 1.000 0.999 0.999
LGBM 0.996 1.000 0.998 1.000 0.995 0.997 1.000 1.000 1.000
AutoM 1.000 0.962 0.980 0.762 1.000 0.865 0.951 0.821 0.881
KNN 1.000 0.769 0.870 0.727 0.250 0.372 0.863 0.879 0.871

Concurrent Commits Heavy Workload Missing Indexes
P R F1 P R F1 P R F1

LR 1.000 1.000 1.000 0.993 0.990 0.992 0.480 0.242 0.322
MLP 0.999 0.999 0.999 1.000 0.992 0.996 0.576 0.595 0.585
DT 0.998 0.999 0.998 0.984 0.988 0.986 0.890 0.325 0.476
RF 1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.775 0.869
XGB 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.974 0.979
LGBM 1.000 1.000 1.000 1.000 0.998 0.999 0.985 0.954 0.970
AutoM 0.849 0.915 0.881 0.883 0.914 0.898 0.303 0.429 0.355
KNN 0.893 0.870 0.881 0.907 0.672 0.772 0.347 0.169 0.227

Too Many Indexes Vacuum Lock Waits
P R F1 P R F1 P R F1

LR 0.772 0.871 0.819 0.698 0.869 0.774 1.000 1.000 1.000
MLP 0.777 0.899 0.834 0.793 0.784 0.788 1.000 1.000 1.000
DT 0.828 0.861 0.844 0.742 0.981 0.845 0.989 1.000 0.995
RF 0.865 0.991 0.924 0.899 0.995 0.944 1.000 1.000 1.000
XGB 0.933 0.980 0.956 0.987 0.992 0.989 1.000 1.000 1.000
LGBM 0.915 0.979 0.946 0.978 0.993 0.985 1.000 1.000 1.000
AutoM 0.891 0.880 0.886 0.645 0.544 0.590 1.000 0.556 0.714
KNN 0.827 0.920 0.871 0.639 0.818 0.717 0.000 0.000 0.000

Table 13. Evaluation on Different Dataset Sizes.

Size 40 80 120
Acc Time (s) Acc Time (s) Acc Time (s)

XGB 0.811 2.0 0.822 2.6 0.889 2.7
LGBM 0.833 1.2 0.852 2.6 0.894 3.1
DBS 0.593 10307.8 0.616 20820.8 0.654 31080.0

and 64_128) as introduced in Section 6.2, 9 scenarios in total, for training. We take the scenario
with Smallbank and 64_256 for test. The results of accuracy are shown in Table 14. There are more
significant varieties in the results than in the previous experiments. LGBM has the best accuracy,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:21

Table 14. Evaluation on Different Scenarios.

LR MLP DT RF XGB LGBM

Acc 0.7023 0.6134 0.7453 0.8402 0.8122 0.8641

Table 15. Case Study of Anomaly Diagnosis.

Case # LGBM AutoM KNN
SHAP Top-3 DistT DistF DistT DistF

1 0.2626 0.0780 0.0620 0.6431 0.4511
2 0.2609 0.1185 0.0963 0.9211 0.9143
3 0.2818 0.0823 0.0674 0.6433 0.5576
4 0.2640 0.0241 0.0237 0.1890 0.1732
5 0.2707 0.2089 0.2046 2.0391 1.7151

followed by RF and XGB. MLP performs the worst, indicating lower abilities of generalization for
this task.
To explain why the machine learning models generally have higher accuracy than traditional

algorithms, we analyze some cases where AutoM/KNN misclassify but LGBM does not. In Table
15, we show 5 cases from the anomalies where LGBM has substantially higher accuracy than
AutoM/KNN. In cases #1 and #2, the correct label is Missing Indexes but misclassified by AutoM and
KNN as Vacuum. In cases #3 and #4, the correct label is Vacuum but misclassified asMissing Indexes.
In case #5, the correct label is Lock Waits but misclassified as I/O Saturation.

For LGBM, its tree nodes split based on the discriminative features. We compute the normalized
SHAP importance [38] of each metric, which measures its marginal contribution to the model. The
result shows that the top-3 metrics in LGBM make more than 1/4 contributions among the 110
metrics. For AutoM/KNN, various metrics are treated with equal importance. We show the distance
from each case point to its closest training samples with the correct label (DistT) and misclassified
label (DistF). The result shows only slight differences between the distances, indicating that the
important metrics captured by LGBM are neglected by AutoM and KNN.
We have the following conclusions from the experiments. First, XGBoost and LightGBM, two

machine learning models, generally perform better than DBSherlock, AutoMonitor, and the other
machine learning algorithms that we select. Second, our benchmark supports both machine learning
and heuristic algorithms. Third, the difficulty of diagnosis each anomaly type is different, which
is also related to the diagnosis algorithm. Finally, the machine learning algorithms need a large
dataset to achieve a good performance. This proves that DBPA can help to improve the performance
of anomaly diagnosis in transactional databases by making machine learning available for this task.

7.3 Diagnosis of Compound Anomalies
To evaluate different algorithms for compound anomalies diagnosis, we employ a one-vs-rest model
for each single anomaly type. The models are trained with single anomalies and normal data, and
tested with compound anomalies and normal data. We only evaluate the selected machine learning
algorithms, because AutoMonitor and KNN do not support one-vs-rest for compound anomalies
and DBSherlock has low time efficiency for the full dataset.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:22 Shiyue Huang et al.

Table 16. Evaluation on Compound Anomalies Diagnosis.

Same Category Different Categories
Model P R F1 P R F1

LR 1.0000 0.5262 0.6896 0.9642 0.4468 0.6106
MLP 0.9978 0.5017 0.6677 0.8195 0.5322 0.6454
DT 0.9670 0.6049 0.7442 0.8379 0.5400 0.6568
RF 0.9792 0.6032 0.7465 1.0000 0.3501 0.5186
XGB 0.8711 0.6032 0.7128 0.8605 0.1265 0.2205
LGBM 0.8762 0.5887 0.7043 1.0000 0.1265 0.2245

Table 17. Evaluation with MySQL-based Dataset.

Test Env. 32_128 32_256 64_128 64_256

LR 0.8100 0.8862 0.8563 0.9264
MLP 0.7590 0.7467 0.8888 0.8872
DT 0.9032 0.7667 0.8018 0.9804
RF 0.9176 0.9712 0.9027 0.9331
XGB 0.9583 0.9150 0.9552 0.8512
LGBM 0.9670 0.8713 0.9444 0.9258
AutoM 0.5118 0.3628 0.5133 0.5767
KNN 0.6386 0.4867 0.5472 0.3378

We have two groups of compound anomalies, one belongs to the same category and the other
belongs to different categories, which has the same settings as Section 6.3. The evaluation metrics
are the precision, recall, and F1 score of the model for each anomaly type.
As shown in Table 16, the diagnosis of compound anomalies generally has high precision but

low recall, which indicates that most positive samples are correct, but there are many omissions.
For the compound anomalies of the same category, there is not a significant difference between the
performance of different machine learning algorithms. Decision Tee and Random Forest generally
perform better, and MLP performs the worst. For the compound anomalies of different categories,
Decision Tree and MLP generally perform better. The tree-based ensemble models (RF, XGB, and
LGBM) perform worse, indicating that they may not be suitable for this task.

7.4 Evaluation on MySQL
The previous experiments are based on the open-source PostgreSQL databases. To illustrate the
generality of DBPA, we extend DBPA to another popular open-source DBMS, MySQL, for the
evaluation of diagnosis algorithms. The generation of the dataset follows the same approach as
introduced in Section 4, except that we do not include the anomaly type Vacuum and the reason is
mentioned in Section 3.1.
We take an experiment that is similar to Section 6.2. We use the data from three system envi-

ronments for training and the rest one for test. We test the classification accuracy of the common
diagnosis algorithms introduced in Section 7.2.
The results are shown in Table 17, where the headers show the system environment of test

data and the values shows the classification accuracy. The accuracy is generally high for the
machine learning models but still distinguishable. Thus, we prove that: (1) different anomalies are

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:23

distinguishable in the MySQL-based dataset; (2) the evaluation of common diagnosis algorithms is
supported.

8 CONCLUSION
In this work, we propose DBPA, a benchmark for the common performance anomalies in trans-
actional database systems. It can help to apply machine learning techniques to the diagnosis of
database performance anomalies. To ease the burden of benchmarking different anomaly detection
algorithms, we first need to generate the anomaly data, which is the main effort of our work. There
is no open-source dataset available and it is difficult to collect such data from real-life DBs. To
the best of our knowledge, this is the first work to propose specific reproduction procedures to
generate data for database performance anomalies. In DBPA, we select nine common anomaly
types categorized by the influence factors of the database performance. We propose a general
reproduction procedure for each anomaly category, and the specific procedure for each anomaly
type. We describe the dataset construction procedure and propose a generation algorithm for
compound anomalies. DBPA meets the requirements of consistency, correctness, diversity, support
for compound anomalies, extensiveness, and effectiveness. With DBPA, users can easily extend
new anomaly types, generate a dataset in new environments, or evaluate different algorithms for
anomaly detection and diagnosis. Empirical studies show that the tree-based ensemble machine
learning models perform better than the heuristic algorithms for database anomaly diagnosis, which
indicates that our work can help to improve the diagnosis performance in modern transactional
database systems.

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of China (NSFC) (No. 61832001,
U22B2037) and ZTE-PKU joint program (HC-CN-20220614004). Bin Cui is the corresponding author.

REFERENCES
[1] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017. Automatic Database Management System

Tuning Through Large-scale Machine Learning. In SIGMOD. ACM, 1009–1024.
[2] Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zihong Yuan, Pierre Senellart, and Stéphane Bressan. 2016.

Regularized Cost-Model Oblivious Database Tuning with Reinforcement Learning. Trans. Large Scale Data Knowl.
Centered Syst. 28 (2016), 96–132.

[3] Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan, Gopal Kakivaya, David B. Lomet, Ramesh
Manne, Lev Novik, and Tomas Talius. 2011. Adapting microsoft SQL server for cloud computing. In ICDE. IEEE
Computer Society, 1255–1263.

[4] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5–32.
[5] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying Density-Based Local

Outliers. In SIGMOD. ACM, 93–104.
[6] Wei Cao, Yusong Gao, Bingchen Lin, Xiaojie Feng, Yu Xie, Xiao Lou, and Peng Wang. 2018. TcpRT: Instrument and

Diagnostic Analysis System for Service Quality of Cloud Databases at Massive Scale in Real-time. In SIGMOD. ACM,
615–627.

[7] Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. 2014. CauseInfer: Automatic and distributed performance diagnosis
with hierarchical causality graph in large distributed systems. In INFOCOM. IEEE, 1887–1895.

[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In KDD. ACM, 785–794.
[9] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, andGrahamWood. 2005. Automatic Performance

Diagnosis and Tuning in Oracle. In CIDR. www.cidrdb.org, 84–94.
[10] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux. 2013. OLTP-Bench: An Extensible

Testbed for Benchmarking Relational Databases. Proc. VLDB Endow. 7, 4 (2013), 277–288.
[11] Prashanth Dintyala, Arpit Narechania, and Joy Arulraj. 2020. SQLCheck: Automated Detection and Diagnosis of SQL

Anti-Patterns. In SIGMOD. ACM, 2331–2345.
[12] Korry Douglas and Susan Douglas. 2003. PostgreSQL: a comprehensive guide to building, programming, and administering

PostgresSQL databases. SAMS publishing.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:24 Shiyue Huang et al.

[13] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning Database Configuration Parameters with
iTuned. Proc. VLDB Endow. 2, 1 (2009), 1246–1257.

[14] Dejan Dundjerski and Milo Tomasevic. 2020. Automatic database troubleshooting of Azure SQL Databases. IEEE
Transactions on Cloud Computing (2020).

[15] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong. 2013. Systematic construc-
tion of anomaly detection benchmarks from real data. In SIGKDD workshop on outlier detection and description. ACM,
16–21.

[16] Ayat Fekry, Lucian Carata, Thomas F. J.-M. Pasquier, Andrew Rice, and Andy Hopper. 2020. To Tune or Not to Tune?:
In Search of Optimal Configurations for Data Analytics. In KDD. ACM, 2494–2504.

[17] Jia-Ke Ge, Yanfeng Chai, and Yunpeng Chai. 2021. WATuning: AWorkload-Aware Tuning System with Attention-Based
Deep Reinforcement Learning. J. Comput. Sci. Technol. 36, 4 (2021), 741–761.

[18] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, and Amit Levi. 2020. Sentinel: Universal Analysis and Insight for
Data Systems. Proc. VLDB Endow. 13, 11 (2020), 2720–2733.

[19] Jing Han, Tong Jia, Yifan Wu, Chuanjia Hou, and Ying Li. 2021. Feedback-Aware Anomaly Detection Through Logs
for Large-Scale Software Systems. ZTE Communications 19, 3 (2021), 88–94.

[20] Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, and Yue Zhao. 2022. ADBench: Anomaly Detection
Benchmark. In NeurIPS. 32142–32159.

[21] Shiyue Huang, Yanzhao Qin, Xinyi Zhang, Yaofeng Tu, Zhongliang Li, and Bin Cui. 2023. Survey on performance
optimization for database systems. Sci. China Inf. Sci. 66, 2 (2023).

[22] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime Tatbul. 2021. A Demonstration of the
Exathlon Benchmarking Platform for Explainable Anomaly Detection. Proc. VLDB Endow. 14, 12 (2021), 2827–2830.

[23] Lianyuan Jin and Guoliang Li. 2021. AI-based Database Performance Diagnosis. Journal of Software 32, 3 (2021),
845–858.

[24] Michael I Jordan and Tom M Mitchell. 2015. Machine learning: Trends, perspectives, and prospects. Science 349, 6245
(2015), 255–260.

[25] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang. 2019. APOLLO: Automatic Detection and
Diagnosis of Performance Regressions in Database Systems. Proc. VLDB Endow. 13, 1 (2019), 57–70.

[26] Prajakta Kalmegh, Shivnath Babu, and Sudeepa Roy. 2017. Analyzing Query Performance and Attributing Blame for
Contentions in a Cluster Computing Framework. CoRR abs/1708.08435 (2017).

[27] Prajakta Kalmegh, Shivnath Babu, and Sudeepa Roy. 2019. iQCAR: inter-Query Contention Analyzer for Data Analytics
Frameworks. In SIGMOD. ACM, 918–935.

[28] Guolin Ke, Qi Meng, Thomas Finley, TaifengWang, Wei Chen, WeidongMa, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM:
A Highly Efficient Gradient Boosting Decision Tree. In NIPS. 3146–3154.

[29] Poonyanuch Khumnin and Twittie Senivongse. 2017. SQL antipatterns detection and database refactoring process. In
SNPD. IEEE Computer Society, 199–205.

[30] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic mirror in my hand, which is the best
in the land? An Experimental Evaluation of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.

[31] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop an AutoTuner for Memory-based
Analytics. In SIGMOD Conference. ACM, 1667–1683.

[32] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2021. A Survey on Advancing the DBMS Query Optimizer: Cardinality
Estimation, Cost Model, and Plan Enumeration. Data Sci. Eng. 6, 1 (2021), 86–101.

[33] Alexander Lavin and Subutai Ahmad. 2015. Evaluating Real-Time Anomaly Detection Algorithms - The Numenta
Anomaly Benchmark. In ICMLA. IEEE, 38–44.

[34] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware Database Tuning System with Deep
Reinforcement Learning. Proc. VLDB Endow. 12, 12 (2019), 2118–2130.

[35] Zhichao Li, Li Tian, and Xuefeng Yan. 2022. A novel deep quality-supervised regularized autoencoder model for
quality-relevant fault detection. Sci. China Inf. Sci. 65, 5 (2022), 1–3.

[36] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In ICDM. IEEE Computer Society, 413–422.
[37] Ping Liu, Shenglin Zhang, Yongqian Sun, Yuan Meng, Jiahai Yang, and Dan Pei. 2020. FluxInfer: Automatic Diagnosis

of Performance Anomaly for Online Database System. In IPCCC. IEEE, 1–8.
[38] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In NIPS. 4765–4774.
[39] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang, Jinbao Chen, Asim Praveen, Yu Yang,

Xiaoming Gao, Alexandra Wang, Wen Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang
Wu, Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for Transactional and Analytical
Workloads. In SIGMOD. ACM, 2530–2542.

[40] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen Lim, Prashanth Menon, and Andrew
Pavlo. 2021. MB2: Decomposed Behavior Modeling for Self-Driving Database Management Systems. In SIGMOD. ACM,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

DBPA: A Benchmark for Transactional Database Performance Anomalies 72:25

1248–1261.
[41] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xinhao Jiang, Hanwen Hu, Cheng Luo,

Yilin Li, Nengjun Qiu, Feifei Li, Changcheng Chen, and Dan Pei. 2020. Diagnosing Root Causes of Intermittent Slow
Queries in Large-Scale Cloud Databases. Proc. VLDB Endow. 13, 8 (2020), 1176–1189.

[42] Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, and Solomon Garber. 2018. NashDB: An End-to-End Economic
Method for Elastic Database Fragmentation, Replication, and Provisioning. In SIGMOD. ACM, 1253–1267.

[43] Jeffrey C. Mogul and John Wilkes. 2019. Nines are Not Enough: Meaningful Metrics for Clouds. In HotOS. ACM,
136–141.

[44] Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. 2013. Performance and resource modeling in
highly-concurrent OLTP workloads. In SIGMOD. ACM, 301–312.

[45] Barzan Mozafari, Carlo Curino, and Samuel Madden. 2013. DBSeer: Resource and Performance Prediction for Building
a Next Generation Database Cloud. In CIDR. www.cidrdb.org.

[46] Karthik Nagaraj, Charles Edwin Killian, and Jennifer Neville. 2012. Structured Comparative Analysis of Systems Logs
to Diagnose Performance Problems. In NSDI. USENIX Association, 353–366.

[47] Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. 2005. Continuous resource monitoring for self-
predicting DBMS. In MASCOTS. IEEE Computer Society, 239–248.

[48] Xiaolong Pan, Weiming Wu, and Yonghao Gu. 2011. Study and optimization based on MySQL storage engine. In
Advances in Multimedia, Software Engineering and Computing Vol. 2. Springer, 185–189.

[49] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD:
An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection. Proc. VLDB Endow. 15, 8 (2022),
1697–1711.

[50] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma, Prashanth Menon, Todd C. Mowry, Matthew
Perron, Ian Quah, Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu, Ran
Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems. In CIDR. www.cidrdb.org.

[51] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata Borovica-Gajic. 2021. DBA bandits:
Self-driving index tuning under ad-hoc, analytical workloads with safety guarantees. In ICDE. IEEE, 600–611.

[52] Anthony N Pettitt. 1979. A non-parametric approach to the change-point problem. Journal of the Royal Statistical
Society: Series C (Applied Statistics) 28, 2 (1979), 126–135.

[53] Robert B. Ross, George Amvrosiadis, Philip H. Carns, Charles D. Cranor, Matthieu Dorier, Kevin Harms, Greg Ganger,
Garth Gibson, Samuel K. Gutierrez, Robert Latham, Robert W. Robey, Dana Robinson, Bradley W. Settlemyer, Galen M.
Shipman, Shane Snyder, Jérome Soumagne, and Qing Zheng. 2020. Mochi: Composing Data Services for High-
Performance Computing Environments. J. Comput. Sci. Technol. 35, 1 (2020), 121–144.

[54] Durgesh Samariya and Jiangang Ma. 2022. A New Dimensionality-Unbiased Score for Efficient and Effective Outlying
Aspect Mining. Data Sci. Eng. 7, 2 (2022), 120–135.

[55] Carla Sauvanaud, Mohamed Kaâniche, Karama Kanoun, Kahina Lazri, and Guthemberg Silvestre. 2018. Anomaly
detection and diagnosis for cloud services: Practical experiments and lessons learned. J. Syst. Softw. 139 (2018), 84–106.

[56] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and Robert C. Williamson. 2001. Estimating
the Support of a High-Dimensional Distribution. Neural Comput. 13, 7 (2001), 1443–1471.

[57] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Taha Rafiq, and Umar Farooq Minhas. 2014.
Accordion: Elastic Scalability for Database Systems Supporting Distributed Transactions. Proc. VLDB Endow. 7, 12
(2014), 1035–1046.

[58] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga, and Michael Stonebraker. 2016. Clay:
Fine-Grained Adaptive Partitioning for General Database Schemas. Proc. VLDB Endow. 10, 4 (2016), 445–456.

[59] Shudi Shao, Zhengyi Qiu, Xiao Yu,Wei Yang, Guoliang Jin, Tao Xie, and XintaoWu. 2020. Database-Access Performance
Antipatterns in Database-Backed Web Applications. In ICSME. IEEE, 58–69.

[60] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The Case for Automatic Database Administration
using Deep Reinforcement Learning. CoRR abs/1801.05643 (2018).

[61] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga, Michael Stonebraker, Ricardo Mayerhofer,
and Francisco Jose Andrade. 2018. P-Store: An Elastic Database System with Predictive Provisioning. In SIGMOD.
ACM, 205–219.

[62] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore, Ashraf Aboulnaga, Andrew Pavlo, and
Michael Stonebraker. 2014. E-store: Fine-grained elastic partitioning for distributed transaction processing systems.
Proceedings of the VLDB Endowment 8, 3 (2014), 245–256.

[63] David M. J. Tax and Robert P. W. Duin. 2004. Support Vector Data Description. Mach. Learn. 54, 1 (2004), 45–66.
[64] Alexander Thomasian. 1994. On a More Realistic Lock Contention Model and Its Analysis. In ICDE. IEEE Computer

Society, 2–9.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

72:26 Shiyue Huang et al.

[65] Wenhu Tian, Patrick Martin, and Wendy Powley. 2003. Techniques for automatically sizing multiple buffer pools in
DB2. In CASCON. IBM, 294–302.

[66] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSherlock: A Performance Diagnostic Tool for Transactional
Databases. In SIGMOD. ACM, 1599–1614.

[67] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu,
Minwei Ran, and Zekang Li. 2019. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement
Learning. In SIGMOD. ACM, 415–432.

[68] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui. 2022. Facilitating Database Tuning
with Hyper-Parameter Optimization: A Comprehensive Experimental Evaluation. Proc. VLDB Endow. 15, 9 (2022),
1808–1821.

[69] Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. 2022. Diagnosis
of COVID-19 Pneumonia via a Novel Deep Learning Architecture. J. Comput. Sci. Technol. 37, 2 (2022), 330–343.

[70] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying Zhang, and Bin Cui. 2021. ResTune:
Resource Oriented Tuning Boosted by Meta-Learning for Cloud Databases. In SIGMOD. ACM, 2102–2114.

[71] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards Dynamic and Safe Configuration
Tuning for Cloud Databases. In SIGMOD Conference. ACM, 631–645.

[72] Zipiao Zhao, Yongli Zhao, Boyuan Yan, and Dajiang Wang. 2022. Auxiliary Fault Location on Commercial Equipment
Based on Supervised Machine Learning. ZTE Communications 20, S1 (2022), 7–15.

[73] Yuanhong Zhong, Xia Chen, Jinyang Jiang, and Fan Ren. 2022. Reverse erasure guided spatio-temporal autoencoder
with compact feature representation for video anomaly detection. Sci. China Inf. Sci. 65, 9 (2022), 1–3.

[74] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2022. Database Meets Artificial Intelligence: A Survey. IEEE
Trans. Knowl. Data Eng. 34, 3 (2022), 1096–1116.

[75] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and Yingchun
Yang. 2017. BestConfig: tapping the performance potential of systems via automatic configuration tuning. In SoCC.
ACM, 338–350.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 72. Publication date: May 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Common Performance Anomalies
	3.2 Requirements

	4 Reproduction of Common Anomalies
	4.1 Background Workloads
	4.2 Database Environment Anomalies
	4.3 Workload Amount Anomalies
	4.4 Query-triggered Anomalies
	4.5 Extension to New Anomaly Types

	5 Dataset Construction
	5.1 Monitoring Metrics
	5.2 Diversity
	5.3 Benchmark Architecture and APIs
	5.4 Compound Anomalies

	6 Validation Experiments
	6.1 Validation on Effectiveness
	6.2 Validation on Diversity
	6.3 Validation on Compound Anomalies

	7 Evaluation Experiments
	7.1 Anomaly Detection
	7.2 Diagnosis of Single Anomalies
	7.3 Diagnosis of Compound Anomalies
	7.4 Evaluation on MySQL

	8 Conclusion
	Acknowledgments
	References

